Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Маланичева Наталья Никопадина ИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: директор филиала

Дата подписания: 08.09.20 РЭТЬ НОВ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Уникальный программный ключ: 94732c3d953a82d495dcc3155d5c573883fedd18

САМАРСКИЙ ГОСУ ДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

(СамГУПС)

Филнал СамГУПС в г. Нижнем Новгороде

PACCMOTPEHA

на заседании Ученого совета филиала СамГУПС в г. Нижнем Новгороде протокол от 22 июня 2021 г. № 3

УТВЕРЖДАЮ:

и.о. директора филиала

Н.Н. Маланичева

Математическое моделирование систем и процессов

рабочая программа дисциплины

Специальность 23.05.06 Строительство железных дорог, мостов и транспортных тоннелей

Специализация: Управление техническим состоянием железнодорожного пути

Форма обучения: заочная

Программу составил: Катаева Л.Ю.

Рабочая программа разработана в соответствии с ФГОС:

Федеральный государственный образовательный стандарт высшего образования по специальности 23.05.06 Строительство железных дорог, мостов и транспортных тоннелей специализация «Управление техническим состоянием железнодорожного пути» утвержден приказом Министерства образования и науки Российской Федерации от «27» марта 2018 г. № 218.

Рабочая программа одобрена на заседании кафедры «Общеобразовательные и профессиональные дисциплины»

Протокол от «19» июня 2021 г. № 10

Зав. кафедрой, канд. техн. наук, проф. ______ И.В. Каспаров

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

1.1. Цели и задачи дисциплины

Дисциплина «Математическое моделирование систем и процессов» имеет своей целью дать студентам практические навыки в области построения и применения математических моделей. С этой целью особое внимание уделяется взаимосвязи данного предмета с другими изучаемыми дисциплинами.

Цель дисциплины — формирование у обучающихся компетенций в соответствии с федеральными государственными образовательными стандартами по специальности 23.05.06 «Строительство железных дорог, мостов и транспортных тоннелей».

Целями освоения учебной дисциплины Математическое моделирование систем и процессов являются:

- ознакомление студентов с базовыми понятиями математического аппарата, необходимого для создания моделей и их применения к решению как теоретических, так и практических задач;
- привитие студентам умения и привычки к самостоятельному изучению учебной литературы по математике и использования интернет ресурсов для поиска необходимой информации;
- развитие логического мышления и повышение общего уровня математической культуры и навыков работы с различными специализированными пакетами прикладных программ;
- выработка навыков решения прикладных задач и умения сформулировать задачи по специальности на математическом языке.

1.2. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля).

Индикатор	Результаты освоения учебной дисциплины		
-	кенерные задачи в профессиональной деятельности с ственных наук, математического анализа и моделирования		
ОПК-1.4. Применяет методы математического анализа и моделирования для обоснования принятия решений в профессиональной деятельности	Знать: - основы моделирования систем и процессов; - основы представления профессиональных задач в формальном представлении; - методы решения типовых профессиональных задач. Уметь: - осуществлять обоснованный выбор математического представления сформулированной задачи; - проводить теоретические и экспериментальные исследования; - применять методы моделирования систем и процессов для анализа и решения профессиональных задач		
	Владеть: - основными методами представления прикладных задач в		

математической форме;
навыками решения и выбора методов для типовых задач;основными приемами анализа прикладных задач.

2. Место дисциплины (модуля) в структуре образовательной программы Учебная дисциплина Математическое моделирование систем и процессов

относится к дисциплинам обязательной части Блока 1. «Дисциплины (модули)».

Код дисциплины	Наименование дисциплины	Коды формируемых компетенций				
	Осваиваемая дисциплина					
Б1.О.36 Математическое моделирование систем и процессов		ОПК-1 (ОПК-1.4)				
	Предшествующие дисциплины					
нет						
	Дисциплины, осваиваемые параллельно					
	нет					
	Последующие дисциплины					
Б3.01	Выполнение и защита выпускной квалификационной работы	ОПК-1 (ОПК-1.4)				

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделяемых на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

3.1. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

Вид учебной работы	Всего часов по	Курсы
	учебному плану	4
Общая трудоемкость дисциплины:		
- часов	216	216
- зачетных единиц	6	6
Контактная работа обучающихся	20,9	20,9
с преподавателем (всего), часов		
из нее аудиторные занятия, всего	20,9	20,9
В Т.Ч.:		
лекции	8	8
практические занятия	12	12
лабораторные работы		
KA	0,4	0,4
КЭ	0,5	0,5
Самостоятельная подготовка к экзаменам в	7,5	7,5
период экзаменационной сессии (контроль)		
Самостоятельная работа (всего), часов	187,6	187,6
в т.ч. на выполнение:		
контрольной работы	9	9
расчетно-графической работы		
реферата		
курсовой работы		

курсового проекта		
Виды промежуточного контроля	3a, 3aO	3a, 3aO
Текущий контроль (вид, количество)	K(1)	K(1)

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Темы и краткое содержание курса

Раздел 1. Введение в математическое моделирование

Основные понятия и определения. Задачи моделирования физических процессов и технологических систем. Математическая модель объекта моделирования; классификация моделей; основные этапы моделирования, требования, предъявляемые к математическим моделям.

Раздел 2. Математическое программирование

Задачи линейного программирования. Основная задача линейного программирования. Симплекс-метод решения задачи линейного программирования. Транспортная задача. Задачи нелинейного программирования. Метод множителей Лагранжа. Градиентные методы оптимизации. Динамическое программирование. Понятие об оптимальном управлении. Принцип оптимальности.

Раздел 3. Методы решения инженерных задач

Основы теории погрешностей. Численные методы решения скалярных уравнений. Численные методы решения систем линейных и нелинейных уравнений. Аппроксимация функций. Метод наименьших квадратов. Интерполирование функций. Численное интегрирование. Численные методы решения обыкновенных дифференциальных уравнений. Численные методы решения систем уравнений в частных производных.

4.2. Содержание дисциплины (модуля), структурированное по темам

Названия разделов и тем	Всего часов		Виды учебных занятий		ий
	по	Контактная работа		CPC	
	учебному	(Аудиторная работа)			
	плану	ЛК	П3	ЛБ	
Раздел 1. Введение в математическое	63	1			62
моделирование	03	1			02
Раздел 2 Математическое	72	3	6		63
программирование	12	3	U		03
Раздел 3 Методы решения инженерных	72,6	4	6		62,6
задач	72,0	7	U		02,0
KA	0,4				
КЭ	0,5				
Контроль	7,5				
Всего	216	8	12		187,6

4.3. Тематика практических занятий

Тома практиноского занатна	Количество часов
Тема практического занятия	всего
Математическое программирование	6
Методы решения инженерных задач	6
Всего	12

4.4. Тематика лабораторных работ

Лабораторные работы учебным планом не предусмотрены

4.5. Тематика контрольных работ

Тема: Математическое программирование и методы решения инженерных задач.

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине (модулю)

5.1. Распределение часов по темам и видам самостоятельной работы

color wempegemenne	ILLUD III III	iam is bugam camberoured but pado
Разделы и темы	Всего часов по учебному	Вид самостоятельной работы
	плану	
Раздел 1. Введение в математическое моделирование	62	Самостоятельное изучение отдельных тем учебной литературы. Выполнение контрольной работы. Подготовка к промежуточной аттестации и текущему контролю знаний. Подготовка к электронному тестированию
Тема 1 Математическое программирование	63	Самостоятельное изучение отдельных тем учебной литературы. Выполнение контрольной работы. Подготовка к промежуточной аттестации и текущему контролю знаний. Подготовка к электронному тестированию
Тема 2 Методы решения инженерных задач	62,6	Самостоятельное изучение отдельных тем учебной литературы. Выполнение контрольной работы. Подготовка к промежуточной аттестации и текущему контролю знаний. Подготовка к электронному тестированию
Всего	187,6	

5.2. Перечень учебно-методического обеспечения для самостоятельной работы студентов с указание места их нахождения:

- учебная литература библиотека филиала
- методические рекомендации по выполнению контрольной работы;
- методические рекомендации по самостоятельной работе сайт филиала.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю).

Вид оценочных средств	Количество		
	Текущий контроль		
Контрольная работа	1		
Курсовая работа	Учебным планом не предусмотрено		
Курсовой проект Учебным планом не предусмотрено			
Промежуточный контроль			
Зачет	1		
Зачет с оценкой	1		

Фонд оценочных средств представлен в приложении к рабочей программе.

7. Перечень основной и дополнительной литературы

	7.1 Основная литература						
	Авторы, составители	Заглавие	Издательство, год	Колич-во			
Л1.1	Голубева Н.В.	Математическое моделирование систем и процессов: учебное пособие	Санкт-Петербург : Лань, 2016 192 с Режим доступа: http://e.lanbook.com/book/76825	Электронный ресурс			
Л1.2	Солоп С.А., Кулькин А.Г.	Математическое моделирование систем и процессов: учебное пособие	Ростов-на-Дону: РГУПС, 2017. — 172 с Режим доступа: https://e.lanbook.com/book/129321	Электронный ресурс			
Л1.3	Василенко, М. Н.	Математическое моделирование систем и процессов: учебное пособие	Санкт-Петербург: ПГУПС, 2016. — 61 с. — Режим доступа: https://e.lanbook.com/book/91103	Электронный ресурс			
		7.2 Дополнителі	ьная литература				
Л2.1	С. В. Карасев, Д. В. Осипов, Д. А. Сивицкий.	Математическое моделирование систем и процессов на транспорте : учебное пособие	Новосибирск: СГУПС, 2020. — 136 с. — Режим доступа: https://e.lanbook.com/book/ 164609	Электронный ресурс			
Л2.2	Горбачев, Д. В. Новиков, С. В. Белоусов	Математическое моделирование систем и процессов: учебное пособие	Санкт-Петербург: ПГУПС, 2017. — 54 с. — Режим доступа: https://e.lanbook.com/book/	Электронный ресурс			

8. Перечень ресурсов информационно - телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

- 1. Официальный сайт филиала
- 2. Электронная библиотечная система
- 3. Поисковые системы «Яндекс», «Google» для доступа к тематическим информационным ресурсам.

9. Методические указания для обучающихся по освоению дисциплины

- 1. Лекционные занятия составляют основу теоретического обучения, включают в себя систематизированные основы знаний по дисциплине, концентрируют внимание обучающихся на наиболее сложных и узловых вопросах. Студентам рекомендуется конспектировать предлагаемый материал, для этого на занятиях необходимо иметь письменные принадлежности.
- 2. Практические занятия являются дополнением лекционных курсов и самостоятельной работы обучающихся, а также средством проверки усвоения ими знаний, даваемых на лекции и в процессе изучения рекомендуемой литературы. Практические занятия включают решение задач разного уровня. При подготовке к практическим занятиям по дисциплине необходимо ознакомиться с лекционным материалом на соответствующую тему.
- 3. Самостоятельная работа студентов по изучению дисциплины является основным видом учебных занятий. Умение самостоятельно работать необходимо для успешного овладения курсом. В рамках самостоятельной работы студент должен выполнить контрольную работу. Выполнение и защита контрольной работы являются непременным условием для допуска к зачету. Во время выполнения контрольной работы можно получить групповые или индивидуальные консультации у преподавателя.

10. Перечень информационных технологий, программного обеспечения и информационных справочных систем, используемых при осуществлении образовательного процесса по дисциплине

При осуществлении образовательного процесса по дисциплине используются следующие информационные технологии и программное обеспечение:

- для проведения лекций, демонстрации презентаций и ведения интерактивных занятий: MS PowerPoint;
 - MicrosoftOfficeProfessional 2007 (лицензия № 43571763 от 06.03.2008)
- для самостоятельной работы студентов: Windows 7 и выше, Microsoft Office 2010 и выше.

Программное обеспечение для проведения практических занятий:

- Графический редактор MS Excel;
- Программы компьютерной математики MathCAD.
- Программное обеспечение POLUS (свободно распространяемое ПО) http://old.petrsu.ru/Chairs/Mechanics/resourse.html#POLUS

Профессиональные базы данных, используемые для изучения дисциплины (свободный доступ)

- 1. Общероссийский математический портал (информационная система) http://www.mathnet.ru
- 2. Mathcad обучающий ресурс http://www.exponenta.ru/soft/Mathcad/learn/learn.asp
- 3. Портал интеллектуального центра научной библиотеки им. Е.И. Овсянкина https://library.narfu.ru/index.php?option=com_content&view=article&id=500&Itemid=569&lang=ru

11. Описание материально - технической базы, необходимой для осуществления образовательного процесса по дисциплине

11.1. Требования к аудиториям (помещениям, кабинетам) для проведения занятий с указанием соответствующего оснащения занятий с указанием соответствующего оснащения

Учебная аудитория для проведения учебных занятий, предусмотренных программой специалитета (проведение занятий лекционного типа) - аудитория № 401. Специализированная мебель: столы ученические - 32 шт., стулья ученические - 64 шт., доска настенная - 1 шт., стол преподавателя - 1 шт., стул преподавателя - 1 шт. Технические средства обучения: переносной экран, переносной проектор, ноутбук. Учебно-наглядные пособия, обеспечивающие тематические иллюстрации, соответствующие рабочей программе дисциплины _ комплект презентаций (хранится на кафедре).

Учебная аудитория для проведения учебных занятий, предусмотренных программой специалитета (занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации) - Лаборатория Компьютерный класс № 1, аудитория № 408. Специализированная мебель: столы ученические - 33 шт., стулья ученические - 43 шт., доска настенная - 1 шт., стол преподавателя - 1 шт. Стул преподавателя - 1 шт. Технические средства обучения: компьютеры - 22 шт., видеопанель - 1 шт. Программное обеспечение - Місгоsoft Office Professional 2010. Маthcad 14.

11.2. Перечень лабораторного оборудования

Лабораторное оборудование не предусмотрено.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ

1. Перечень компетенций с указанием этапов их формирования в процессе освоения учебной дисциплины

1.1. Перечень компетенций

ОПК-1. Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования

Индикатор ОПК-1.4. Использует методы математического анализа и моделирования для обоснования принятия решений в профессиональной деятельности

1.2. Этапы формирования компетенций в процессе освоения учебной дисциплины

Наименование этапа	Содержание этапа (виды учебной работы)	Коды формируемых на этапе	
		компетенций,	
		индикаторов	
Этап 1. Формирование	Лекции, самостоятельная работа	ОПК-1 (ОПК-1.4)	
теоретической базы	студентов с теоретической базой,		
знаний	практические занятия		
Этап 2. Формирование	Практические занятия	ОПК-1 (ОПК-1.4)	
умений			
Этап 3. Формирование	Выполнение контрольной работы	ОПК-1 (ОПК-1.4)	
навыков практического			
использования знаний и			
умений			
Этап 4. Проверка	Защита контрольной работы, зачет,	ОПК-1 (ОПК-1.4)	
усвоенного материала	зачет с оценкой		

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

2.1. Показатели и критерии оценивания компетенций на различных этапах их формирования

	nu pustin inizia stunua na wopinipozumia					
Этап	Код	Показатели	Критерии	Способы		
формирования	компетенци	оценивания		оценки		
компетенции	И,	компетенций				
	индикатора					
Этап 1.	ОПК-1	-посещение	-наличие конспекта	Устный ответ		
Формирование	(ОПК-1.4)	лекционных	лекций по всем			
теоретической		занятий;	темам, вынесенным			
базы знаний		- ведение	на лекционное			
		конспекта лекций;	обсуждение;			
		- участие в	-активное участие			
		обсуждении	студента в			
		теоретических	обсуждении			
		вопросов тем на	теоретических			
		практических	вопросов;			
		занятиях				

Этап 2.	ОПК-1	-выполнение	-успешное	Разбор задач и
Формирование	(ОПК-1.4)	практических	самостоятельное	участие в их
умений (решение	± ±		выполнение	обсуждении
задачи по			практических работ	
образцу)				
Этап 3.	ОПК-1	- наличие	- контрольная работа	Контрольная
Формирование	(ОПК-1.4)	правильно	имеет	работа
навыков		выполненной	положительную	
практического		контрольной	рецензию и	
использования		работы	допущена к защите	
знаний и умений				
Этап 4. Проверка	ОПК-1	- успешная	- ответы на все	устный ответ
усвоенного	усвоенного (ОПК-1.4)		вопросы по	
материала		контрольной	контрольной работе;	
			- ответы на основные	
		-зачет	и дополнительные	
		-зачет с оценкой	вопросы зачета	

2.2. Критерии оценивания компетенций по уровню их сформированности

		ю их сформированно	
Код компетенции,	Уровни с	нций	
индикатора	базовый	средний	высокий
ОПК-1 (ОПК-1.4)	Знать: основные	Знать: основные	Знать: основные
	методы	методы	методы
	математического	математического	математического
	анализа и	анализа и	анализа и
	моделирования для	моделирования для	моделирования для
	обоснования принятия	обоснования принятия	обоснования
	решений в	решений в	принятия решений
	профессиональной	профессиональной	В
	деятельности.	деятельности.	профессиональной
	Уметь: применять	Уметь: применять	деятельности.
	методы	методы	Уметь:
	математического	математического	комбинировать
	анализа и	анализа и	методы
	моделирования для	моделирования для	математического
	обоснования принятия	обоснования принятия	анализа и
	решений в простых	решений при решении	моделирования для
	задач.	типовых задач.	обоснования
	Владеть: методами	Владеть: методами	принятия решений
	математического	математического	В
	анализа и	анализа и	профессиональной
	моделирования	моделирования	деятельности.
профессиональной		профессиональной	Владеть:
	деятельности для	деятельности для	методами
	обоснованного	обоснованного	математического
	принятия решений в	принятия решений в	анализа и
	простых задачах.	типовых задачах.	моделирования
			профессиональной
			деятельности для
			обоснованного
			принятия решений

	В
	профессиональных
	задач задачах.

2.3. Шкалы оценивания формирования индикаторов достижения компетенций

а) Шкала оценивания зачета

***	T.C.		
Шкала оценивания	Критерии оценивания		
Зачтено	Индикатор достижения компетенции сформирован на уровне		
	не ниже базового и студент отвечает на дополнительные		
	вопросы.		
	- прочно усвоил предусмотренной программой материал;		
	- правильно, аргументировано ответил на все вопросы.		
	- показал глубокие систематизированные знания, владеет		
	приемами рассуждения и сопоставляет материал из разных		
	источников: теорию связывает с практикой, другими темами		
	данного курса, других изучаемых предметов		
	- без ошибок выполнил практическое задание.		
Незачтено	Индикатор достижения компетенции сформирован на уровне		
	ниже базового и студент затрудняется ответить на		
	дополнительные вопросы.		
	Выставляется студенту, который не справился с 50%		
	вопросов и заданий билета, в ответах на другие вопросы		
	допустил существенные ошибки. Не может ответить на		
	дополнительные вопросы, предложенные преподавателем.		

б) Шкала оценивания зачета с оценкой

Шкала оценивания	Критерии оценивания		
оценка «отлично»	Индикатор достижения компетенции сформирован на		
	высоком уровне.		
	Теоретическое содержание дисциплины освоено		
	полностью, без пробелов. Студент демонстрирует полное		
	соответствие знаний, умений и навыков показателям и		
	критериям оценивания индикатора достижения		
	компетенции на формируемом дисциплиной уровне.		
	Оперирует приобретенными знаниями, умениями и		
	навыками, в том числе в ситуациях повышенной		
	сложности. Отвечает на все вопросы билета без наводящих		
	вопросов со стороны преподавателя. Не испытывает		
	затруднений при ответе на дополнительные вопросы.		
оценка «хорошо»	- Индикатор достижения компетенции сформирован на		
	высоком уровне, но допускаются неточности;		
	- индикатор достижения компетенции сформирован на		
	среднем уровне, но студент отвечает на все		
	дополнительные вопросы.		
	Теоретическое содержание дисциплины освоено		
	полностью, без пробелов. Студент демонстрирует полное		
	соответствие знаний, умений и навыков показателям и		
	критериям оценивания индикатора достижения		
	компетенции на формируемом дисциплиной уровне.		

	Оперирует приобретенными знаниями, умениями и		
	навыками; его ответ представляет грамотное изложение		
	учебного материала по существу; отсутствуют		
	существенные неточности в формулировании понятий;		
	правильно применены теоретические положения,		
	подтвержденные примерами. На два теоретических		
	вопроса студент дал полные ответы, на третий - при		
	наводящих вопросах преподавателя. При ответе на		
	дополнительные вопросы допускает неточности.		
оценка	- Индикатор достижения компетенции сформирован на		
«удовлетворительно»	базовом уровне и студент отвечает на все дополнительные		
	вопросы;		
	- индикатор достижения компетенции сформирован на		
	среднем уровне с наличием неточностей и затрудняется		
	ответить на дополнительные вопросы.		
	Теоретическое содержание дисциплины освоено частично,		
	но проблемы не носят принципиального характера.		
	Студент демонстрирует неполное соответствие знаний,		
	умений и навыков показателям и критериям оценивания		
	индикатора достижения компетенции на формируемом		
	дисциплиной уровне: допускаются значительные ошибки,		
	проявляется отсутствие знаний по ряду вопросов.		
	Затрудняется отвечать на дополнительные вопросы.		
оценка	Индикатор достижения компетенции сформирован на		
«неудовлетворительно»	уровне ниже базового и студент затрудняется ответить на		
	дополнительные вопросы.		
	Теоретическое содержание дисциплины освоено частично.		
	Студент демонстрирует явную недостаточность или		
	полное отсутствие знаний, умений и навыков на заданном		
	уровне сформированности индикатора достижения		
	компетенции.		

в) Шкала оценивания контрольной работы

b) mikulu odemibumin kom polibnom puootibi				
Шкала оценивания	Критерии оценивания			
Зачтено	Индикатор достижения компетенции сформирован на уровне			
	не ниже базового.			
	Даны ответы на все теоретические вопросы. Все расчеты			
	выполнены верно и имеют необходимые пояснения			
Незачтено	Индикатор достижения компетенции сформирован на уровне			
	ниже базового.			
	В расчетах допущены ошибки, необходимые пояснен			
	отсутствуют, имеются ошибки в теоретических вопросах.			

3. Типовые контрольные задания и иные материалы, необходимые для оценки знаний, умений, навыков, характеризующих этапы формирования компетенций

				· ·
Код	Этапы формирования		ормирования	Типовые задания
компетенции,	компетенции		петенции	(оценочные средства)
индикатора				
ОПК-1 (ОПК-1.4)	Этап	1.	Формирование	- дискуссия: вопросы для
	теоретической базы знаний		ой базы знаний	обсуждения
	Этап	2.	Формирование	- практические задания

	умений (реше	ние задачи по	(методические рекомендации для
	образцу)		проведения практических занятий)
	Этап 3.	Формирование	- контрольная работа: перечень
	навыков	практического	вопросов и задач по вариантам
	использования	знаний и	(методические рекомендации)
	умений		
	Этап 4.	Проверка	- защита контрольной работы;
	усвоенного мат	териала	- вопросы к зачету, зачету с
			оценкой (приложение 1)

4. Методические материалы, определяющие процедуры оценивания знаний, умений и навыков

Зачет с оценкой

Проводится в заданный срок, согласно графику учебного процесса. Экзамен проходит в форме собеседования по билетам, в которые включаются теоретические вопросы. При выставлении оценок учитывается уровень приобретенных компетенций студента. Аудиторное время, отведенное студенту, на подготовку — 30 мин.

Зачет

Зачет проводится в заданный срок, согласно графику учебного процесса. Зачет проходит в форме собеседования по вопросам, в которые включаются теоретические вопросы и задача. При выставлении оценок учитывается уровень приобретенных компетенций студента. Аудиторное время, отведенное студенту, на подготовку – 30 мин.

Контрольная работа

Это внеаудиторный вид самостоятельной работы студентов. Контрольная работа включает в себя теоретические вопросы и задачи, охватывающих основные вопросы дисциплины. Работа выполняется по вариантам, согласно последней и предпоследней цифре шифра и сдается на проверку.

После проверки Контрольная работа возвращается студентам для подготовки ее защите.

Защита контрольной работы проводится на экзаменационной сессии и является основанием для допуска студента к зачету. При защите контрольной работы студенты должны ответить на теоретические вопросы по тематике контрольной работы.

Тема: Математическое программирование и методы решения инженерных задач.

Дискуссия

При проведении дискуссии студентам для обсуждения предлагаются вопросы по теме, отведенной на практическое занятие (согласно рабочей программе учебной дисциплины).

Практическая работа

Проведение практических работ позволяет студентам углубить и закрепить теоретические знания, развития навыков самостоятельного экспериментирования. Учащиеся приобретают умения и навыки, необходимые им в последующей профессиональной деятельности.

Проведение практических работ позволяет студентам освоить основы математического и имитационного моделирования систем и процессов, а также их анализа на основе решения типовых профессиональных задач.

ВОПРОСЫ К ЗАЧЕТУ

Вопросы для проверки уровня обученности «ЗНАТЬ»

- 1. В чем состоят особенности динамических задач оптимизации?
- 2. Приведите примеры динамической задачи оптимизации.
- 3. Что такое управление и переменная состояния в динамических моделях?
- 2. В чем состоит метод динамического программирования в многошаговых задачах оптимизации?
- 3. Как формулируется задача по подбору эмпирических формул.
- 4. Геометрическая интерпретация задачи построения эмпирической формулы.
- 5. Функции, используемые для построения эмпирических формул.
- 6. Выбор наилучшей функции.
- 7. Какой процесс называется случайным? Приведите примеры.
- 8. Как на практике определить интенсивность порождающего потока случайных событий?
- 9. Что называется плотностью вероятности перехода системы из состояния в состояние?
- 10. Как составляется система линейных алгебраических уравнений с неизвестными предельными вероятностями по размеченному графу состояний системы?
- 11. Как составляется система линейных алгебраических уравнений с неизвестными предельными вероятностями по матрице плотностей вероятностей перехода?
- 12. Генерирование случайных чисел. Генерирование случайных чисел, распределенных по экспоненциальному закону распределения.
- 13. Генерирование случайных чисел. Генерирование случайных чисел, распределенных по нормальному закону распределения.
- 14. Генерирование случайных чисел. Псевдослучайные числа. Генерирование последовательности равномерно распределенных случайных чисел.
- 15. Как имитируется расстояние между двумя случайными событиями пуассоновского потока? Как на практике определить интенсивность порождающего потока случайных событий?
- 16. Как обеспечить требуемый выходной параметр статической модели, управляя входными воздействиями на нее? Напишите алгоритм, нарисуйте схему реализации.
- 17. Как определить необходимое число итераций в статистическом эксперименте для достижения заданной точности?

Вопросы для проверки уровня обученности «УМЕТЬ»

- 1. Как осуществляется описание случайного характера суточных объемов вагонопотоков законами распределения вероятностей отличными от нормального.
- 2. Как определяется оптимальная стратегия и цена игры. Решение игр в чистых стратегиях и седловые точки матрицы игры.
- 3. В каком случае интенсивность входящего потока заявок существенно зависит от состояний замкнутой n-канальной СМО? Перечислите отличия замкнутых СМО от разомкнутых.

- 4. Как осуществляется Обработка статистических данных. Частота, относительная частота, плотность относительной частоты.
- 5. Как на практике используются критерии согласия Пирсона и Колмогорова. Приведите пример.
- 6. Как осуществляется статистическое моделирование случайных величин.
- 7. Сформулируйте математическую модель транспортной задачи, необходимое и достаточное условия разрешимости, свойства системы ограничений, опорное решение.

Вопросы для проверки уровня обученности «ВЛАДЕТЬ»

Студент должен владеть способностью решать задачи профессиональной деятельности методов математического и имитационного моделирования с применением пакетов прикладных программ.

ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ

Вопросы для проверки уровня обученности ЗНАТЬ

- 1. В чем состоят особенности динамических задач оптимизации?
- 2. Что такое управление и переменная состояния в динамических моделях?
- 3. Сформулируйте принцип оптимальности Беллмана
- 4. Как формулируется задача по подбору эмпирических формул.
- 5. Выбор наилучшей функции.
- 6. Орграфы. Основные определения. Матрицы орграфов. Орцепи и орциклы.
- 7. Неориентированные графы. Основные определения. Полный граф Кп. Матрицы графов. Циклы, цепи. Достижимость. Связность.
- 8. Эйлеровы и гамильтоновы графы. Задача Эйлера.
- 9. Деревья, лес. Остовное дерево графа. Цикломатическое и хроматическое числа графа.
- 10. Что понимается под системами массового обслуживания (СМО) и для чего они предназначены?
- 11.В чем стоит цель, предмет задачи теории СМО?
- 12. Какие блоки включает схема СМО?
- 13. Что понимается под характеристикой эффективности работы СМО?
- 14. Случайный процесс (СП) какого типа протекает в СМО?
- 15. Какой процесс называется случайным? Приведите примеры.
- 16. Какой СП называется Марковским?
- 17. Что представляет собой граф состояний системы?
- 18. Какие СП называются дискретными?
- 19. Какие СП называются непрерывными?
- 20. Дайте определение состояния без выхода, без входа.
- 21. Какая система называется эргодической?
- 22. Дайте определение СП с дискретным и непрерывным временем.
- 23. Что называется Марковской цепью?
- 24. Что собой представляют вероятности состояний?
- 25. Какая Марковская цепь называется однородной (неоднородной)?

- 26. Дайте определение вероятностей состояний системы, в которой протекает Марковский случайный процесс с непрерывным временем.
- 27. Что называется плотностью вероятности перехода системы из состояния в состояние?
- 28. Дайте определение однородного и неоднородного Марковского дискретного процесса с непрерывным временем.
- 29. Какова физическая интерпретация предельных вероятностей состояний дискретной Марковской системы с непрерывным временем?
- 30. На какие классы делятся СМО в зависимости от характера потоков?
- 31. На какие классы делятся СМО в зависимости от числа каналов?
- 32. На какие классы делятся СМО в зависимости от дисциплины обслуживания?
- 33. На какие классы делятся СМО в зависимости от ограничения потока заявок?
- 34.На какие классы делятся СМО в зависимости от количества этапов обслуживания?
- 35. Кто впервые занимался исследованием многоканальных СМО с отказами?
- 36. Как называется модель случайного процесса, протекающего в многоканальной СМО с отказами?
- 37. Что понимается под «потоком обслуживаний» заявок?
- 38. Как выглядит размеченный граф для многоканальной СМО с отказами?
- 39. Какие вероятности состояний СМО называются предельными и какой режим функционирования они характеризуют?
- 40. Что представляет собой приведенная интенсивности входящего потока и какова единица измерения этого показателя?
- 41.Перечислите основные предельные характеристики эффективности функционирования n-канальной СМО с отказами.
- 42. Дайте определение вероятностей состояний системы, в которой протекает Марковский случайный процесс с непрерывным временем.
- 43. Дайте определение однородного и неоднородного Марковского дискретного процесса с непрерывным временем.
- 44. Замкнутая многоканальная СМО.

Вопросы для проверки уровня обученности «УМЕТЬ»

- 1. Как составляется система линейных алгебраических уравнений с неизвестными предельными вероятностями по размеченному графу состояний системы?
- 2. Как составляется система линейных алгебраических уравнений с неизвестными предельными вероятностями по матрице плотностей вероятностей перехода?
- 3. Определите размеченный граф состояний системы, в которой протекает Марковский случайный процесс с непрерывным временем
- 4. Функции, используемые для построения эмпирических формул.
- 5. Метод наименьших квадратов.
- 6. Геометрическая интерпретация задачи построения эмпирической формулы.
- 7. В чем состоит метод динамического программирования в многошаговых задачах оптимизации?
- 8. Приведите примеры динамической задачи оптимизации.
- 9. Генерирование случайных чисел. Генерирование случайных чисел,

распределенных по экспоненциальному закону распределения.

- 10. Генерирование случайных чисел. Генерирование случайных чисел, распределенных по нормальному закону распределения.
- 11. Генерирование случайных чисел. Псевдослучайные числа. Генерирование последовательности равномерно распределенных случайных чисел.
- 12. Как имитируется расстояние между двумя случайными событиями пуассоновского потока? Как на практике определить интенсивность порождающего потока случайных событий?
- 13. Как обеспечить требуемый выходной параметр статической модели, управляя входными воздействиями на нее? Напишите алгоритм, нарисуйте схему реализации.
- 14. Как определить необходимое число итераций в статистическом эксперименте для достижения заданной точности?
- 15. Как рассчитать рейтинг проекта в экспертизе методом Кемени? Как рассчитать объективность эксперта?
- 16. Как составляется система линейных алгебраических уравнений с неизвестными предельными вероятностями по размеченному графу состояний системы?

Вопросы для проверки уровня обученности «ВЛАДЕТЬ»

1. Задана матрица P_1 вероятностей перехода дискретной цепи Маркова из i – го в j – ое состояние за один шаг (i, j = 1,2). Распределение вероятностей по состояниям в начальный момент t=0 определяется вектором \bar{q} . Найти : 1. матрицу P_2 перехода цепи из состояния i в состояние j за два шага;

$$P = \begin{pmatrix} 0.1 & 0.9 \\ 0.2 & 0.8 \end{pmatrix} , \qquad \vec{q} = (0.7; 0.3).$$

2. Задана матрица P_1 вероятностей перехода дискретной цепи Маркова из i- го в j- ое состояние за один шаг $(i,\ j=1,2)$. Распределение вероятностей по состояниям в начальный момент t=0 определяется вектором \overline{q} . Найти : 1. матрицу P_2 перехода цепи из состояния i в состояние j за два шага;

$$P = \begin{pmatrix} 0.1 & 0.9 \\ 0.2 & 0.8 \end{pmatrix} , \qquad \vec{q} = (0.7; 0.3).$$

3. Задана матрица P_1 вероятностей перехода дискретной цепи Маркова из i- го в j- ое состояние за один шаг $(i,\ j=1,2)$. Распределение вероятностей по состояниям в начальный момент t=0 определяется вектором \overline{q} . Найти : 1. матрицу P_2 перехода цепи из состояния i в состояние j за два шага;

$$P = \begin{pmatrix} 0.7 & 0.3 \\ 0.5 & 0.5 \end{pmatrix} , \qquad \vec{q} = (0.5; 0.5).$$

4. Задана матрица P_1 вероятностей перехода дискретной цепи Маркова из i – го в j – ое состояние за один шаг (i, j = 1,2). Распределение вероятностей по состояниям в начальный момент t=0 определяется вектором \bar{q} . Найти : 1. матрицу P_2 перехода цепи из состояния i в состояние j за два шага;

$$P = \begin{pmatrix} 0.4 & 0.6 \\ 0.9 & 0.1 \end{pmatrix} , \qquad \vec{q} = (0.2; 0.8).$$

- 5. Задана матрица P_1 вероятностей перехода дискретной цепи Маркова из i-ro в j-oe состояние за один шаг (i, j=1,2). Распределение вероятностей по состояниям в начальный момент t=0 определяется вектором \bar{q} . Найти : 1. матрицу P_2 перехода цепи из состояния \bar{q} і в состояние \bar{q} за два шага; $P=\begin{pmatrix} 0,9&0,1\\0,2&0,8 \end{pmatrix}$, $\bar{q}=(0,5;0,5)$.
- 6. Задана матрица P_1 вероятностей перехода дискретной цепи Маркова из i-ro в j-oe состояние за один шаг (i, j=1,2). Распределение вероятностей по состояниям в начальный момент t=0 определяется вектором \overline{q} . Найти : 1. матрицу P_2 перехода цепи из состояния i в состояние j за два шага; $P=\begin{pmatrix} 0,3&0,7\\0,9&0,1 \end{pmatrix}$, $\overline{q}=(0,3;0,7)$.
- 7. Задана матрица P_1 вероятностей перехода дискретной цепи Маркова из i- го в j- ое состояние за один шаг (i, j=1,2). Распределение вероятностей по состояниям в начальный момент t=0 определяется вектором \bar{q} . Найти : 1. матрицу P_2 перехода цепи из состояния i в состояние j за два шага; $P=\begin{pmatrix} 0,4&0,6\\0,5&0,5 \end{pmatrix}$, $\bar{q}=(0,9;0,1)$.
- 8. Задана матрица P_1 вероятностей перехода дискретной цепи Маркова из $i-r_0$ в $j-o_0$ состояние за один шаг (i, j=1,2). Распределение вероятностей по состояниям в начальный момент t=0 определяется вектором \bar{q} . Найти : 1. матрицу P_2 перехода цепи из состояния \bar{q} в состояние \bar{q} за два шага; $P=\begin{pmatrix} 0,8&0,2\\0,2&0,8 \end{pmatrix}$, $\bar{q}=(0,1;0,9)$.
- 9. Задана матрица P_1 вероятностей перехода дискретной цепи Маркова из i-ro в j-oe состояние за один шаг (i, j=1,2). Распределение вероятностей по состояниям в начальный момент t=0 определяется вектором \bar{q} . Найти : 1. матрицу P_2 перехода цепи из состояния \bar{q} весостояние \bar{q} за два шага; $P=\begin{pmatrix} 0,6&0,4\\0,7&0,3 \end{pmatrix}$, $\bar{q}=(0,2;0,8)$.
- 10.Задана матрица P_1 вероятностей перехода дискретной цепи Маркова из $i-r_0$ в $j-r_0$ е состояние за один шаг (i, j=1,2). Распределение вероятностей по состояниям в начальный момент t=0 определяется вектором \bar{q} . Найти: 1. матрицу P_2 перехода цепи из состояния $i-r_0$ осотояния $i-r_0$ од $i-r_0$ од
- в состояние ј за два шага; $P = \begin{pmatrix} 0.1 & 0.9 \\ 0.2 & 0.8 \end{pmatrix}$, $\vec{q} = (0.4; 0.6)$ 11. Решить транспортную задачу при заданных матрице с

11. Решить транспортную задачу при заданных матрице смежности
$$c \coloneqq \begin{pmatrix} 4 & 11 & 31 & 7 \\ 2 & 23 & 9 & 85 \\ 86 & 29 & 20 & 56 \\ 7 & 31 & 18 & 6 \end{pmatrix}$$
 предложении
$$a \coloneqq \begin{pmatrix} 200 \\ 100 \\ 30 \\ 50 \end{pmatrix}$$
 и спросе
$$b \coloneqq \begin{pmatrix} 180 \\ 100 \\ 10 \\ 90 \end{pmatrix}$$

12.Решить транспортную задачу при заданных матрице смежности
$$c \coloneqq \begin{pmatrix} 8 & 7 & 4 \\ 1 & 9 & 5 \end{pmatrix}$$
 предложении
$$a \coloneqq \begin{pmatrix} 2 \\ 98 \end{pmatrix}$$
 и спросе

13.Решить транспортную задачу при заданных матрице смежности
$$c := \begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 5 \end{pmatrix}$$
 предложении
$$a := \begin{pmatrix} 20 \\ 40 \end{pmatrix}$$
 и спросе
$$\begin{pmatrix} 10 \\ 20 \\ 30 \end{pmatrix}$$

предложении (40) и спросе (30)
$$c := \begin{pmatrix} 3 & 2 & 6 & 1 \\ 2 & 10 & 1 & 5 \\ 7 & 4 & 8 & 9 \end{pmatrix}$$
 14. Решить транспортную задачу при заданных матрице смежности (35)

$$a := \begin{pmatrix} 35 \\ 15 \\ 40 \end{pmatrix}$$
 и спросе

15. Решить транспортную задачу при заданных матрице смежности
$$c := \begin{pmatrix} 3 & 2 & 6 & 1 \\ 2 & 3 & 0 & 5 \\ 7 & 4 & 8 & 9 \end{pmatrix}$$

$$a := \begin{pmatrix} 35 \\ 15 \\ 40 \end{pmatrix}$$
 и спросе $b := \begin{pmatrix} 40 \\ 0 \\ 30 \\ 20 \end{pmatrix}$

$$c := \begin{pmatrix} 3 & 2 & 6 & 1 \\ 2 & 3 & 0 & 5 \\ 7 & 4 & 8 & 9 \end{pmatrix}$$

$$a := \begin{pmatrix} 50 \\ 0 \\ 40 \end{pmatrix}$$
 и спросе $b := \begin{pmatrix} 10 \\ 30 \\ 30 \\ 20 \end{pmatrix}$

17. Решить транспортную задачу при заданных матрице смежности
$$c := \begin{pmatrix} 0 & 2 & 6 & 1 \\ 2 & 3 & 1 & 5 \\ 7 & 2 & 8 & 4 \end{pmatrix}$$

$$a := \begin{pmatrix} 50 \\ 2 \\ 38 \end{pmatrix}$$
 и спросе $b := \begin{pmatrix} 1 \\ 30 \\ 39 \\ 20 \end{pmatrix}$

18. Решить транспортную задачу при заданных матрице смежности
$$c := \begin{pmatrix} 1 & 2 & 4 & 1 \\ 2 & 3 & 1 & 5 \\ 3 & 2 & 4 & 4 \end{pmatrix}$$

$$a:=\begin{pmatrix}50\\30\\10\end{pmatrix}$$
и спросе $b:=\begin{pmatrix}30\\30\\10\\20\end{pmatrix}$

$$c := \begin{pmatrix} 2 & 3 & 4 & 3 \\ 5 & 3 & 1 & 2 \\ 2 & 1 & 4 & 2 \end{pmatrix}$$

19. Решить транспортную задачу при заданных матрице смежности

$$a:=\begin{pmatrix} 90\\30\\40 \end{pmatrix}$$
 и спросе $b:=\begin{pmatrix} 70\\30\\20\\40 \end{pmatrix}$

20.Решить транспортную задачу при заданных матрице смежности

$$\mathbf{c} := \begin{pmatrix} 4 & 21 & 5 & 7 \\ 2 & 11 & 6 & 85 \\ 86 & 29 & 20 & 56 \\ 7 & 31 & 18 & 6 \end{pmatrix}$$
 предложении
$$\mathbf{a} := \begin{pmatrix} 20 \\ 100 \\ 30 \\ 50 \end{pmatrix}$$
 и спросе
$$\mathbf{b} := \begin{pmatrix} 0 \\ 100 \\ 10 \\ 90 \end{pmatrix}$$

- 21.Максимизировать заданную целевую функцию Z, трехмерный график, на котором изобразить плоскости ограничений и плоскость рассчитанной ЦФ. На графике показать точку оптимума. $Z=9x_1+10x_2+16x_3$, $18x_1+15x_2+12x_3\leq 360$, $6x_1+4x_2+8x_3\leq 192$,
- $-10x_1+3x_2+3x_3 \le 30, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$
- 22. Максимизировать заданную целевую функцию Z, трехмерный график, на котором изобразить плоскости ограничений и плоскость рассчитанной ЦФ. На графике показать точку оптимума

$$23.Z=7x_1+12x_2+14$$
 x_3 , $28x_1+25x_2+22x_3 \le 560$, $4x_1-40x_2+6x_3 \le 100$, $-10x_1+30x_2+5x_3 \le 50$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$

- 24. Максимизировать заданную целевую функцию Z, трехмерный график, на котором изобразить плоскости ограничений и плоскость рассчитанной ЦФ. На графике показать точку оптимума
- $25.Z = 2x_1 + 3x_2 + 4x_3, -5x_1 + 6x_2 + 7x_3 \le 20, 8x_1 9x_2 + 10x_3 \le 30, 11x_1 + 12x_2 13x_3 \le 40, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$
- 26. Максимизировать заданную целевую функцию Z, трехмерный график, на котором изобразить плоскости ограничений и плоскость рассчитанной ЦФ. На графике показать точку оптимума

$$27.Z=3x_1+4x_2+2x_3$$
, $15x_1-16x_2+17x_3 \le 120$, $-18x_1+19x_2+20x_3 \le 130$, $21x_1+22x_2-23x_3 \le 140$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$

28. Максимизировать заданную целевую функцию Z, трехмерный график, на котором изобразить плоскости ограничений и плоскость рассчитанной ЦФ. На графике показать точку оптимума

$$29.Z=3x_1+4x_2+2x_3, \quad 15x_1+16x_2-17x_3 \le 120, \quad 18x_1-19x_2+20x_3 \le 130, \\ -21x_1+22x_2+23x_3 \le 140, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

- 30. Графически и аналитически решить задачу максимизации целевой функции Z. Найти оптимальное решение с учетом стоимости ресурсов.
- $31.Z=2,4x_1+2x_2,\ 2x_1+5x_2\le 35,\ 6x_1+x_2\le 33,\ 6x_1+5x_2\le 45,\ x_1\ge 0,\ x_2\ge 0.$ Стоимость ресурсов $c_1=7,2; c_2=5,5; c_3=8$
- 32.В отделе k телефонных аппаратов. Среднее число поступающих в отдел вызовов равно λ вызовов в час. Входной поток простейший. Время переговоров распределено по показательному закону и в среднем составляет T минут. Определить:

- 1) вероятность отказа в переговорах;
- 2) абсолютную пропускную способность системы;
- 3) относительную пропускную способность;
- 4) среднее число занятых аппаратов;

$$\frac{\overline{k}}{k}$$
 · 100%

5) коэффициент загрузки оборудования $\frac{100\%}{k}$

Как изменятся эти показатели работы системы, если в отделе добавить еще один аппарат? Сколько аппаратов необходимо добавить, чтобы отказ получали не более 10 % вызовов?

$$k = 3$$
, $\lambda = 20$, $T = 10$.

- 33.В отделе k телефонных аппаратов. Среднее число поступающих в отдел вызовов равно λ вызовов в час. Входной поток простейший. Время переговоров распределено по показательному закону и в среднем составляет T минут. Определить:
 - 1) вероятность отказа в переговорах;
 - 2) абсолютную пропускную способность системы;
 - 3) относительную пропускную способность;
 - 4) среднее число занятых аппаратов;

$$\frac{\overline{k}}{k}$$
 · 100%

5) коэффициент загрузки оборудования $\frac{100\%}{k}$

Как изменятся эти показатели работы системы, если в отделе добавить еще один аппарат? Сколько аппаратов необходимо добавить, чтобы отказ получали не более 10 % вызовов?

$$k = 2,$$
 $\lambda = 15,$ $T = 12.$

- 34. B отделе k телефонных аппаратов. Среднее число поступающих в отдел вызовов равно λ вызовов в час. Входной поток простейший. Время переговоров распределено по показательному закону и в среднем составляет T минут. Определить:
 - 1) вероятность отказа в переговорах;
 - 2) абсолютную пропускную способность системы;
 - 3) относительную пропускную способность;
 - 4) среднее число занятых аппаратов;

$$\frac{\overline{k}}{k}$$
 · 100%

5) коэффициент загрузки оборудования $\frac{-100\%}{k}$

Как изменятся эти показатели работы системы, если в отделе добавить еще один аппарат? Сколько аппаратов необходимо добавить, чтобы отказ получали не более 10 % вызовов?

$$k=2, \qquad \lambda=8, \qquad T=15$$

- 35.В отделе k телефонных аппаратов. Среднее число поступающих в отдел вызовов равно $^{\lambda}$ вызовов в час. Входной поток простейший. Время переговоров распределено по показательному закону и в среднем составляет T минут. Определить:
 - 1) вероятность отказа в переговорах;
 - 2) абсолютную пропускную способность системы;
 - 3) относительную пропускную способность;

4) среднее число занятых аппаратов;

$$\frac{\overline{k}}{k}$$
 · 100%

5) коэффициент загрузки оборудования $\frac{\overline{k}}{k}$ · 100% зменятся эти показатели — \sqrt{k} Как изменятся эти показатели работы системы, если в отделе добавить еще один аппарат? Сколько аппаратов необходимо добавить, чтобы отказ получали не более 10 % вызовов?

$$k = 4$$
, $\lambda = 24$, $T = 10$.