Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Маланичева Наталья Николаевна

Должность: директор филиала Аннотация к рабочей программе по дисциплине

Дата подписания: 08.09.2022 15:30:38 Уникальный программный ключ: «Сопротивление материалов»

94732c3d953a82d495dcc3155d5c573883fedd18

1.1. Цели и задачи дисциплины

Целью освоения учебной дисциплины «Сопротивление материалов» является формирование у обучающегося компетенций в соответствии с требованиями федерального государственного образовательного стандарта по специальности 23.05.03 «Подвижной состав железных дорог»

Курс сопротивления материалов является основой для большинства общеинженерных и специальных дисциплин при подготовке инженера- строителя. В этом курсе изучаются все основные принципы, используемых при расчете сооружений на прочность, устойчивость и деформацию, приводится вывод всех основных формул, рассматриваются физические свойства конструкционных материалов, на основе которых выводятся предельные условия прочности и деформативности.

Задачи изучения дисциплины заключаются в том, что, изучив дисциплину, студент должен:

Иметь представление о поведении различных конструкционных материалов при действии внешних нагрузок, перепадов температур во времени, о способах измерения различных параметров, определяющих напряженно - деформированное состояние конструкции, о составлении расчетных моделей и возможностях их изменений с целью получения более детальной информации, о конструкции большинства испытательных машин, о методике получения статистических данных, о свойствах материалов и назначении предельных нормативных значений.

Знать и уметь использовать способы определения усилий, напряжений и деформаций для стержней, пластин и оболочек, методы расчета статически неопределимых систем в упругой и упруго - пластической стадии работы. Иметь опыт расчета стержней на растяжение и сжатие, поперечный изгиб и сложное сопротивление, расчета пластин на изгиб из плоскости и нагружение в своей плоскости, расчета цилиндрических оболочек.

1.2. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля).

Компетенции (индикатор), формируемые в процессе изу- чения дисциплины	Результаты освоения учебной дисциплины
ОПК-4. Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями нормативных документов	
ОПК-4.6. Оценивает предельное напряженно-деформированное состояние элементов конструкции машин при проведении расчетов и проектировании технических систем	Знать: - основные понятия механики твердого деформируемого тела; - методы определения усилий и деформаций в элементах конструкции при различных видах нагружения; - методы оценки прочности, жесткости и устойчивости

конструкций при различных видах деформаций и нагружений;

- современные численные методы оценки прочностных и пластических свойств конструкций.

Уметь:

- создавать расчетную схему конструкции и определять внутренние силовые факторы в ее сечениях;
- определять напряжения и деформации в различных сечениях конструкции при разных видах нагружения;
- выполнять проверку прочности в соответствии с теориями прочности и материалом конструкции;
- выполнять расчеты на жесткость и устойчивость.
- выполнять расчеты прочности и жесткости при динамическом нагружении конструкций.

Владеть:

- методикой исследования напряженно-деформированного состояния элементов конструкций при простом и сложном ее нагружении;
- методами экспериментального исследования прочности и жесткости конструкций при различных видах деформаций;
- приемами расчета конструкций с использованием современных программных комплексов и прикладных пакетов;
- методами расчета конструкций на прочность, жесткость и устойчивость

2. Место дисциплины (модуля) в структуре образовательной программы

Учебная дисциплина «Сопротивление материалов» относится к обязательной части Блока Б1. Дисциплины (модули)» и является обязательной для изучения.

3. Объем дисциплины (модуля) в зачетных единицах

- 216 часов
- 6 3.e.

4. Содержание дисциплины (модуля)

Введение. Растяжение и сжатие прямого бруса. Механические свойства материалов при растяжении и сжатии. Расчеты на прочность и жесткость при растяжении и сжатии. Плоское напряженное состояние. Сдвиг. Геометрические характеристики поперечных сечений. Кручение. Изгиб. Определение перемещений при изгибе. Изгиб статически неопределимых балок. Сложное сопротивление. Устойчивость сжатых стержней (продольный изгиб). Расчеты при некоторых динамических нагрузках.

5. Формы контроля

Форма текущего контроля – расчетно-графическая работа (2) Форма промежуточной аттестации – экзамен (1)

6. Перечень информационных технологий, программного обеспечения и информационных справочных систем, используемых при осуществлении образовательного процесса по дисциплине

При осуществлении образовательного процесса по дисциплине используются следующие информационные технологии и программное обеспечение:

- для проведения практических занятий используется программа POLUS, имеющаяся в свободном доступе в интернете.
- для проведения лабораторных работ применяется лицензионная программа COLUMBUS, установленная на 20 компьютерах одного их компьютерных классов.
- для самостоятельной работы студентов: Windows 7 и выше, Microsoft Office 2010 и выше.

Программное обеспечение POLUS (свободно распространяемое ПО)

7. Описание материально - технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Учебная аудитория для проведения учебных занятий, предусмотренных программой специалитета (проведение занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации) - аудитория № 401. Специализированная мебель: столы ученические - 32 шт., стулья ученические - 64 шт., доска настенная - 1 шт., стол преподавателя - 1 шт., стул преподавателя - 1 шт. Технические средства обучения: переносной экран, переносной проектор, ноутбук. Учебно-наглядные пособия, обеспечивающие тематические иллюстрации, соответствующие рабочей учебной программе дисциплины - комплект презентаций (хранится на кафедре).

Перечень лабораторного оборудования

Учебная аудитория для проведения учебных занятий, предусмотренных программой специалитета (проведение занятий семинарского типа) - Лаборатория Компьютерный класс № 2, аудитория № 411. Специализированная мебель: столы ученические - 25 шт., стулья ученические - 31 шт., доска настенная - 1 шт., стол преподавателя - 1 шт. стул преподавателя - 1 шт. Технические средства обучения: компьютеры - 17 шт., видеопанель - 1 шт. Microsoft Office Professional 2010. Mathcad 14.