Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Маланичева Наталья Николаевна

Должность: директор филиала

Дата подписания: 09.12.2024 12:16:55 Уникальный программный ключ:

94732c3d953a82d495dcc3155d5c573883fedd18

Приложение к рабочей программе дисциплины

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) ПРОФЕССИОНАЛЬНЫЙ МОДУЛЬ "ЦИФРОВЫЕ ТЕХНОЛОГИИ ПРИ ЭКСПЛУАТАЦИИ И ОБСЛУЖИВАНИИ ЛОКОМОТИВОВ"

Техническая диагностика локомотивов

(наименование дисциплины(модуля)

Направление подготовки / специальность

23.05.03 Подвижной состав железных дорог

(код и наименование)

Направленность (профиль)/специализация

Локомотивы

(наименование)

СОДЕРЖАНИЕ

- 1. Пояснительная записка.
- 2. Типовые контрольные задания или иные материалы для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих уровень сформированности компетенций.
- 3. Методические материалы, определяющие процедуру и критерии оценивания сформированности компетенций при проведении промежуточной аттестации.

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель промежуточной аттестации – оценивание промежуточных и окончательных результатов обучения по дисциплине, обеспечивающих достижение планируемых результатов освоения образовательной программы.

Перечень компетенций, формируемых в процессе освоения дисциплины

Код и наименование компетенции	Код индикатора достижения компетенции
ПК-6 Способен организовывать выполнение работ и принимать управленческие решения на производственном участке с применением современных информационных технологий	ПК-6.1 Принимает управленческие решения на основе интеллектуального анализа показаний средств диагностики локомотивов, с использованием современных цифровых технологий

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Код и наименование индикатора	Результаты обучения по дисциплине	Оценочные		
достижения компетенции		материалы		
ПК-6.1 Принимает управленческие	Обучающийся знает: устройство, принцип действия	Вопросы (14;24-25;		
решения на основе интеллектуального	и функции диагностических комплексов по оценке	33; 37-39; 45; 59-		
анализа показаний средств диагностики	технического состояния локомотивов и их	63; 69-71)		
локомотивов, с использованием	отдельных узлов и элементов.			
современных цифровых технологий	Обучающийся умеет: применять современные информационные технологии при диагностировании объектов	Практическая работа (этап 3, этап 4)		
	Обучающийся владеет: навыками оценки	Лабораторные		
	технического состояния контролируемого объекта	работы № 1-3		

Промежуточная аттестация (зачет) проводится в одной из следующих форм:

- 1) собеседование;
- 2) выполнение и/или размещение заданий в ЭИОС университета.
- 3) тестирование

Промежуточная аттестация (л.р. и п.р.) проводится в одной из следующих форм:

- 1) выполнение л.р. / п.р;
- 2) размещение отчетов по л.р. и п.р в ЭИОС университета с последующей защитой по средствам ресурсов ЭИОС.

2. ТИПОВЫЕ¹ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ УРОВЕНЬ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

2.1 Типовые вопросы (тестовые задания) для оценки знаниевого образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора достижения	Образовательный результат
компетенции	
ПК-6.1 Принимает управленческие решения на основе интеллектуального анализа показаний средств диагностики локомотивов, с использованием современных	Обучающийся знает: устройство, принцип действия и функции диагностических комплексов по оценке технического состояния локомотивов и их отдельных узлов и элементов.
цифровых технологий	

Примеры вопросов/заданий

14. Система диагностирования технического объекта бывает:

Функциональной и логической.

Тестовой и функциональной.

Тестовой и статистической.

Математической и графической.

24. При функциональном диагностировании результатом является:

Сигнал ошибки;

Отказ системы;

Глубина дефекта;

Оценка эффективности

25. Схема функционального диагностирования отличается от тестового дополнительного элемента, который называется:

Схемой контроля

Сигналом контроля

Синтезом конструкции

Специальным конденсатором

33. Система технического диагностирования состоит из трех элементов, укажите лишний:

Объект диагностирования;

Средства диагностирвания;

Метод диагностирования;

Алгоритм диагностирования.

37. Математическая модель объекта диагностики это:

Программируемая составляющая объекта;

Набор формул, по которым рассчитываются эталонные значения всех диагностических параметров;

Дискретный объект;

Измерительное оборудование.

38. Средства диагностирования классифицируются по трем видам, укажите лишнее:

Стационарное;

Переносное;

Бортовое;

Вспомогательное.

39. Аналоговый объект диагностики это:

Объекты с памятью, время в которых дается описание объекта, отсчитывается последовательно;

Объекты без памяти, время в которых дается описание объекта, отсчитывается непрерывно;

Объекты с памятью, время в которых дается описание объекта, отсчитывается параллельно;

Объекты с памятью, время в которых остановлено.

45. Для оценки эффективности функционального диагностирования используется специальная характеристика:

Надежность;

Безотказность;

Достоверность

¹ Приводятся типовые вопросы и задания. Оценочные средства, предназначенные для проведения аттестационного мероприятия, хранятся на кафедре в достаточном для проведения оценочных процедур количестве вариантов. Оценочные средства подлежат актуализации с учетом развития науки, образования, культуры, экономики, техники, техники, технологий и социальной сферы. Ответственность за нераспространение содержания оценочных средств среди обучающихся университета несут заведующий кафедрой и преподаватель – разработчик оценочных средств.

Результативность.

59. Сколько существует способов размагнитить деталь:

2;

4;

6;

60. Циклическое изменение напряженности магнитного поля, по синусоидальному закону называется:

Правилом левой руки;

Законом Снелиуса;

Рядом Фурье;

Петлей Гистерезиса.

61. Дефект, при наличии которого использование продукции по назначению невозможно или исключается из-за несоответствия требованиям безопасности называется:

Значительным;

Малозначительным;

Критическим;

Явным.

62. В зависимости от упругих свойств среды в ней могут возникать упругие волны трех основных видов, укажите неправильную:

Продольные;

Параллельные;

Поперечные;

Поверхностные.

63. Соотношение углов падения, отражения и преломления называется:

Правилом левой руки;

Законом Снелиуса;

Рядом Фурье;

Петлей Гистерезиса.

69. Изменение направления распространения ультразвуковой волны при прохождении через границу раздела двух различных сред, называется:

Преломление;

Отражение;

Поглощение;

Рассеивание.

70. В каких средах могут распространяться акустические волны

Только в твердых;

Только в жидких;

Только в газообразных;

Во всех перечисленных.

71. Угол отражения ультразвукового луча от поверхности раздела вода-сталь:

Составляет 0,25 угла падения;

Равен углу падения;

Составляет приблизительно половину угла падения;

В 2 раза больше угла падения.

2.2 Типовые задания для оценки навыкового образовательного результата

Проверяемый образовательный результат:

Код и наименование индикатора	Образовательный результат
достижения компетенции	
ПК-6.1 Принимает управленческие	Обучающийся умеет: применять современные информационные
решения на основе интеллектуального	технологии при диагностировании объектов
анализа показаний средств диагностики	
локомотивов, с использованием	
современных цифровых технологий	

Примеры заданий

ПРАКТИЧЕСКАЯ РАБОТА

Этап 3. Построение логической функционально-диагностической модели

Правила построения логической ФДМ

Если вход или выход схемы характеризуется несколькими физическими параметрами (A, B, C), то каждый из этих параметров должен представляться отдельным входом и выходом на блоке ФДМ, т.е. происходит расщепление входа или выхода. Однако, следует избегать расщепления входов и выходов и строить ФДМ, когда блоки имеют один выход и один вход и при этом имеют два состояния:

1 - все параметры в поле допуска;

0 - хотя бы один из параметров вышел за поле допуска.

Для получения логической модели каждый і-й блок исходнойфункциональной схемы (i=1...N) заменяется блоком ФДМ, каждый из которых должен иметь один выход и существенные для данного выхода входы. Если входы и выходы характеризуются одним физическим параметром (расщепление выхода не делают), то модель совпадает с исходной функциональной схемой. Логическая модель (ФДМ) называется правильной, если:

- для любой ее пары связанных между собой блоков (Q_i,Q_j) выход z_i является входом x_j и области допустимых значений совпадают;
- для любой пары блоков (**Qi,Qj**), имеющих входы **xi** и **xj**, которые характеризуются одним и тем же физическим параметром, выполняется условие совпадения областей допустимых значений их входов.

При использовании логической ФДМ эффективно обнаруживаются одиночные неисправности ОД. При кратных неисправностях использование ФДМ неэффективно. В то же время следует помнить, что вероятность появления одиночных неисправностей в ОД существенно выше вероятности появления кратных неисправностей.

ТФН представляет собой матрицу, число строк которой равно количеству контролируемых выходов $x_i(i=1...n)$, а число столбцов - числу неисправных состояний S_j (j=1..n).

Заполняют ТФН на основе логического анализа ФДМ, а также физических процессов в объекте по принципиальной или функциональной схеме.

Если при неисправности в блоке Q_j (состояние S_j) выход i-го блока Z_i находится в норме, то на линии пересечения столбца S_j и строки Z_i ставится «1». При этом в любой другой контрольной точке на выходах функциональных элементов, находящихся после неисправного элемента, параметр также имеет недопустимое значение, и на линии пересечения S_j со строками Z_i , Z_{i+1} ,... ставится «0».

Этап 4. Исходные данные

Для непрерывного ОД, содержащего 13 элементов (рис. 4) и заданного логической моделью, построить таблицу функций неисправностей и определить:

- 1. Значения функции предпочтения для проверяемых блоков и рациональные условные алгоритмы поиска неисправностей, если задано:
- а) вероятности неисправного состояния элементов ОД $P(S_i)$ и значениястоимости на выполнение проверок элементов ОД C_i ;
 - б) вероятности неисправного состояния элементов ОД $P(S_i)$;
 - в) информация о вероятностях неисправного состояния элементов ОД и стоимости их проверок отсутствует.

Для каждого рассчитанного алгоритма построить дерево поиска неисправности. Варианты исходных данных для построения диагностической модели и значений априорной вероятности неисправности и стоимости поиска каждого неисправного элемента приведены в таблицах 1 и 2.

Таблица 1 Выбор связей между элементами для построения модели по вариантам задания

№ варианта Последняя цифра ЗК или шифра	Xapa	ктеристики связей между эле	ментами
1	1 - 4	4 - 7	7-10
2	1 - 5	4 - 8	7-11
3	1 - 6	4 - 9	7-12
4	2 - 4	5-7	8-10
5	2 - 5	5-8	8-11
6	2 - 6	5-9	8-12
7	3 - 4	6-7	9-10
8	3-5	6-8	9-11
9	3 - 6	6-9	9-12
0	10-13	11-13	12-13

Таблица 2

Значения вероятностей неисправности элементов модели и стоимостьобнаружения неисправного элемента

Последняя		Элементы												
цифра в зачетной книжке (последняя цифра шифра)		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13
	Pi	0,12	0,09	0,16	0,05	0,03	0,2	0,07	0,11	0,18	0,15	0,25	0,04	0,06
1	Ci	3	5	2	7	6	12	5	4	11	2	6	18	8

	Pi	0,21	0,16	0,08	0,12	0,3	0,25	0,07	0,15	0,05	0,23	0,12	0,04	0,1
2	Ci	5	9	1	4	7	3	5	8	14	6	8	13	6
	Pi	0,08	0,04	0,12	0,17	0,06	0,05	0,11	0,03	0,08	0,13	0,04	0,09	0,05
3	Ci	2	8	4	3	5	4	9	4	17	11	6	5	7
	Pi	0,04	0,09	0,04	0,12	0,21	0,15	0,08	0,03	0,07	0,05	0,14	0,06	0,09
4	Ci	12	5	7	3	6	4	8	15	20	1	5	10	7
_	Pi	0,02	0,05	0,09	0,04	0,2	0,06	014	0,07	019	0,05	0,07	0,02	0,04
5	Ci	5	4	11	6	8	3	14	4	8	6	7	12	2
	Pi	0,05	0,03	0,17	0,2	0,09	0,04	0,11	0,06	0,08	0,15	0,05	0,08	0,07
6	Ci	2	3	4	5	6	7	8	12	9	4	9	4	7
_	Pi	0,02	0,04	0,06	0,11	0,27	0,06	0,08	0,16	0,14	0,05	0,08	0,03	0,07
7	Ci	8	11	2	6	7	9	3	5	8	4	6	2	5
	Pi	0,05	0,07	0,03	0,12	0,19	0,05	0,07	0,24	0,09	0,05	0,07	0,02	0,09
8	Ci	2	12	14	5	8	3	9	4	7	15	4	2	8
	 Pi	0,01	0,09	0,04	0,06	0,15	0,06	0,18	0,04	0,03	0,04	0,08	0,06	0,04
9	Ci	6	4	8	7	9	11	5	3	16	5	7	9	4
	 Pi	0,06	0,07	0,05	0,09	0,02	0,1	0,05	0,2	0,07	0,25	0,03	0,07	0,01
0	Ci	7	9	8	5	2	4	12	17	5	6	4	2	10

ПК-6.1 Принимает управленческие решения на основе интеллектуального анализа показаний средств диагностики локомотивов, с использованием современных цифровых технологий

Обучающийся владеет: навыками оценки технического состояния контролируемого объекта

Примеры заданий

Лабораторная работа №1

Оборудование и оснастка: магнитопорошковый дефектоскоп МД-12ПШ, осветительная лампа, емкость с магнитной суспензией, резиновая груша, контролируемые образцы.

Порядок выполнения работы

- 1. Ознакомиться с техникой безопасности при работе с дефектоскопом;
- 2. Подключить к источнику питания осветительную лампу;
- 3. Проверить подключение намагничивающего устройства к источнику питания и выключенное состояние тумблера на намагничивающем устройстве. Подключить дефектоскоп к сети и включить тумблер «Сеть» на источнике питания:
- 4. Поместить контролируемый образец в ванночку рабочего стола;
- 5. Расположить намагничивающее устройство так, чтобы образец находился примерно в центре его отверстия и включить тумблер на устройстве;
- 6. Тщательно размешать суспензию в емкости (взбалтыванием) и набрать еев резиновую грушу. Полить образец из груши суспензией;
- 7. После осаждения порошка провести осмотр контролируемого образца с подсветкой от лампы. Выявленные скопления (валики) порошка свидетельствуют о местоположении трещин;
- 8. Повторить операции еще два-три раза для контроля всей поверхности, каждый раз поворачивая образец относительно его оси на угол 45-60

градусов;

- 9. После окончания контроля образца отключить намагничивающее устройство, выключить осветительную лампу и источник питания дефектоскопа;
- По итогам контроля выполнить рисунок образца с выявленными дефектами и сделать вывод в отчете по лабораторной работе.

Лабораторная работа №2

Оборудование и оснастка: универсальный ультразвуковой дефектоскоп, набор прямых и наклонных искателей (преобразователей), контрольный (стандартный) образец, комплект рабочих образцов, иммерсионная жидкость.

Порядок выполнения работы

- 1. Изучить теоретические основы методов ультразвуковой дефектоскопии, принцип действия и устройство универсального ультразвукового дефектоскопа с кратким изложением материала в отчете.
- 2. Изучить органы управления используемого универсального дефектоскопа УД2-102 «Пеленг» и провести его тестирование на контрольном образце в соответствии с инструкцией по эксплуатации.

- 3. Изучить методику проведения работ по поиску дефектов в выданном рабочем образце.
- 4. Провести контроль выданного преподавателем рабочего образца эхо-методомна наличие в нем несплошностей с установлением координат ихрасположения по длине образца.
- 5. Зарисовать рабочий образец со схемой расположения дефектов в отчете по лабораторной работе

Лабораторная работа №3

Оборудование и оснастка: вихретоковый дефектоскоп, комплект рабочих образцов.

Порядок выполнения работы

- 1. Изучить теоретические основы методов вихретокового контроля, принцип действия и устройство универсального вихретокового дефектоскопа с кратким изложением материала в отчете.
- 2. Изучить органы управления используемого дефектоскопа ВД-12НФМ и провести его тестирование на контрольном образце в соответствии синструкцией по эксплуатации.
- 3. Изучить методику проведения работ по поиску дефектов в выданном рабочем образце.
- 4. Провести сканирование выданного преподавателем рабочего образца на наличие в нем дефектов.
- 5. Оформить отчет по лабораторной работе.

2.3. Перечень вопросов для подготовки обучающихся к промежуточной аттестации

<u>ПК-6.1 Принимает управленческие решения на основе интеллектуального анализа показаний средств диагностики локомотивов, с использованием современных цифровых технологий Алгоритмы диагностирования, их виды.</u>

- 1. Принципы построения алгоритмов поиска дефектов.
- 2. Понятия прогноза и генеза технического состояния объектов.
- 3. Понятие о показателях и критериях эффективности диагностирования.
- 4. Этапы жизненного цикла объекта диагностирования.
- 5. Системы диагностирования, их основные виды
- 6. Дискретные объекты диагностики, их особенности и критерии выделения при декомпозиции сложного объекта.
- 7. Аналоговые объекты диагностики, их особенности и критерии выделения при декомпозиции сложного объекта.
- 8. Виды и способы контроля диагностических параметров.
- 9. Основы виброакустической диагностики.
- 10. Гармонические и затухающие колебания.
- 11. Алгоритмы диагностирования, их виды.
- 12. Принципы построения алгоритмов поиска дефектов.
- 13. Оценка ошибок при техническом диагностировании.
- 14. Понятие о показателях и критериях эффективности диагностирования.
- 15. Структурные и диагностические параметры. Принципы отбора диагностических параметров.
- 16. Понятия прогноза и генеза технического состояния объектов.
- 17. Изменение параметров технического состояния во времени
- 18. Классификация средств диагностирования

3. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРУ И КРИТЕРИИ ОЦЕНИВАНИЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПРИ ПРОВЕДЕНИИ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Критерии формирования оценок по выполнению тестовых заданий

«Отлично» (5 баллов) — получают обучающиеся с правильным количеством ответов на тестовые вопросы — 100 - 90% от общего объёма заданных тестовых вопросов.

«Хорошо» (4 балла) — получают обучающиеся с правильным количеством ответов на тестовые вопросы — 89 - 70% от общего объёма заданных тестовых вопросов.

«Удовлетворительно» (3 балла) — получают обучающиеся с правильным количеством ответов на тестовые вопросы — 69-40% от общего объёма заданных тестовых вопросов.

«Неудовлетворительно» (0 баллов) - получают обучающиеся с правильным количеством ответов на тестовые вопросы -39% и менее от общего объёма заданных тестовых вопросов.

Критерии формирования оценок по защите отчета по практическим и лабораторным работам

«Зачтено» — получают обучающиеся, оформившие отчет в соответствии с предъявляемыми требованиями, в котором отражены все необходимые результаты проведенного анализа без арифметических ошибок, сделаны обобщающие выводы, а также грамотно ответившие на все встречные вопросы преподавателя.

«Не зачтено» – ставится за отчет, в котором отсутствуют обобщающие выводы, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Вилы ошибок:

- грубые: неумение сделать обобщающие выводы и выявить основные тенденции; неправильные расчеты в области обеспечения безопасности; незнание анализа показателей.
- негрубые: неточности в выводах по оценке основных тенденций изменения; неточности в формулах и определениях различных категорий.

Критерии формирования оценок по защите контрольных работ

«Зачтено» – получают обучающиеся, оформившие контрольную в соответствии с предъявляемыми требованиями, в котором отражены все необходимые результаты проведенного анализа без арифметических ошибок, сделаны обобщающие выводы, а также грамотно ответившие на все встречные вопросы преподавателя.

«Не зачтено» – ставится за контрольную работу, в котором отсутствуют обобщающие выводы, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Виды ошибок:

- грубые: неумение сделать обобщающие выводы и выявить основные тенденции; неправильные расчеты в области проектирования и математического моделирования узлов и агрегатов тепловоза; незнание анализа показателей.
- негрубые: неточности в выводах по оценке основных тенденций изменения; неточности в формулах и определениях различных категорий.

Критерии формирования оценок по зачету

К зачету допускаются обучающиеся, выполнившие более 60% заданий по самостоятельной работе. «Уровень освоения компетенции «зачтено»» - обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и

некоторые неточности.

«Уровень освоения компетенции «незачтено»» - выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

Критерии формирования оценок по экзамену

«Отлично» (5 баллов) — обучающийся демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей применения полученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

«Хорошо» (4 балла) – обучающийся демонстрирует знания всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки,

освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

«Удовлетворительно» (3 балла) — обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и не всегда последователен, допущены ошибки и неточности.

«Неудовлетворительно» (0 баллов) – выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.